Infojual alas roda tabung gas ± mulai Rp 5.000 murah dari beragam toko online. cek Alas Roda Tabung Gas ori atau Alas Roda Tabung Gas kw sebelum membeli. SELAMAT DATANG di hargano.com, Semoga Rezeki Kita nambah 1000x lipat ^_^ berikut ini adalah daftar harga Alas Roda Tabung Gas murah terbaru yang bersumber dari beberapa toko online
mengeluarkanbiji kopi dari tabung. Biaya yang dibutuhkan untuk satu unit mesin adalah Rp. 10.465.823. Mesin pengering otomatis ini menggunakan sumber pemanas dari energi listrik maupun biomassa. 3.2 Pengering Biji Kopi Model Drum Berputar Dengan Penggerak Kaki Kapasitas 40 Kg Cara kerja mesin pengering kopi
Massagas okigen yang terdapat dalam tangka tertutup dapat dinyatakan dengan rumus persamaan hukum gas ideal seperti berikut: P V = n R T n = m/Mr sehingga P V = (m R T)/Mr atau m = (Mr P V)/ (R T) m = (32 x 5,07 x 10 5 x 0,6)/ (8310 x 300) m = 3,9 kg Jadi, massa gas oksigen dalam tangki tertutup adalah 3,9 kg 6).
e perbandingan massa gas yang keluar dari tabung dengan massa gas yang tersisa dalam tabung Pembahasan Data : Massa gas awal m 1 = 4 kg Massa gas tersisa m 2 Massa gas yang keluar dari tabung Δ m = m 2 − m 1 a) massa gas yang tersisa di tabung b) massa gas yang keluar dari tabung c) perbandingan massa gas yang keluar dari tabung dengan
RTV = mRT/PM dimana berlaku V1 = V2 m1.R.T1/P1.M = m2.R.T2/P2.M m1 . T1 = m2 . T2 m2 = m1.T1. /T2 m2 = 4.300/400 m2 = 3 kg massa yang keluar = m1 - m2 massa yang keluar = 4 kg - 3 kg massa yang keluar = 1 kg jadi, massa gas yang dari tabung sebesar 1 kg Beri Rating · 0.0 ( 0) Balas Belum menemukan jawaban?
K5gXRzP.
PertanyaanGas bermassa 4 kg bersuhu 27 o C berada dalam tabung yang berlubang. Jika tabung dipanasi hingga suhu 127 o C, dan pemuaian tabung diabaikan maka, massa gas yang tersisa di tabung adalah...Gas bermassa 4 kg bersuhu 27oC berada dalam tabung yang berlubang. Jika tabung dipanasi hingga suhu 127oC, dan pemuaian tabung diabaikan maka, massa gas yang tersisa di tabung adalah...UAMahasiswa/Alumni Universitas Islam Negeri Sunan Gunung Djati BandungJawabanmassa gas yang tersisa adalah 3 gas yang tersisa adalah 3 m = 4 kg T 1 = 27 o C T 2 =127 o C Ditanyakan massa gas yang tersisa di tabung ... ? Jawab Massa yang tersisa dalam tabung m 2 adalah sebagai berikut dimana berlaku Jadi, massa gas yang tersisa adalah 3 m = 4 kg T1 = 27oC T2 = 127oC Ditanyakan massa gas yang tersisa di tabung ... ? Jawab Massa yang tersisa dalam tabung m2 adalah sebagai berikut dimana berlaku Jadi, massa gas yang tersisa adalah 3 kg. Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!9rb+Yuk, beri rating untuk berterima kasih pada penjawab soal!GLGian Luky SaputraPembahasan lengkap bangetLRLalu Restu Wirya Bhakti Makasih ❤️
Kelas 11 SMATeori Kinetik GasPersamaan Keadaan Gas IdealSebuah tabung yang volumenya 1 liter mempunyai lubang yang memungkinkan udara keluar dari tabung. Mula-mula suhu udara tabung 27C. Tabung dipanaskan hingga suhunya 127C. Perbandingan antara massa gas yang keluar dari tabung dan massa awalnya adalah ....Persamaan Keadaan Gas IdealHukum Boyle-Gay LussacTeori Kinetik GasTermodinamikaFisikaRekomendasi video solusi lainnya0137Sejumlah gas ideal berada di dalam ruangan tertutup mula-...0222Sebuah tabung dengan volume 8 l bertekanan 48 atm bersuhu...0228Massa jenis gas nitrogen pada suhu 0 C dan tekanan 1 a...Teks videoHalo coffee Friends jika kita melihat hal seperti ini Pak sekitar sungai Bali di sini persamaan gas ideal jadi pada gas ideal di sini berlaku per sebuah persamaan P dikali p = n dikali dikali t dengan P adalah tekanan gas P adalah volumenya n adalah jumlah mol R adalah tetapan gas ideal di sini tetapan gas ideal yaitu 8,314 satuan adalah joule per mol k t adalah suhu mutlaknya Enggak di sini untuk Mall atau n jumlah mol bisa dicari dengan cara massa bagi dengan MR nah disini kita. Ubahlah suruh saya makan kita dapat untuk P dikali P = Mol yang menjadi m per s m r * r dikali dengan t massa dan suhu kita pindahkan ke arah kiri maka kita dapat di sini P dikali V per m dikali t = r m r nilai r adalah tetapan gas sudah pasti tetap dan MPR karena di sini gas yang mengalir adalah gas yang sama maka Mrs sudah pasti sama maka bisa kita asumsikan di sini ke p x p per m dikali t = konstan karena RM Reni sama Nah langsung saja kita gunakan persamaan ini untuk mengerjakan soal yang ada di sini sebuah tabung yang volumenya 1 l kita catat volumenya 1 liter mempunyai lubang yang memungkinkan udara keluar dari tabung mula-mula suhu udara tabung 27 derajat Celcius berarti T1 = 27 derajat Celcius kemudian dipanaskan hingga 127 derajat Celcius T2 = 127 derajat Celcius ingat suhu harus jalan 8 k kita + dengan 273 maka disini kita menjadi 300 k yang di sini jadi 400 k kemudian perbandingan antara massa gas yang keluar dari tabung dan massa awalnya disini kita asumsikan tekanan gas nya sama dan juga volume gas yang sama yaitu sama 1 liter gas yang mengalir sama maka Mr X sudah pasti sama berarti langsung saja kita masuk ke persamaannya maka disini bisa kita Tuliskan untuk p 1 dikali 1 per 1 dikali dengan suhu 1 = p 2 * V2 per 2 dikali T 2 karena di sini konstan dan diketahui tekanan dan volume sama bisa langsung kita coret males nulis ini menjadi 1 per 1 dikali dengan t satunya adalah 300 k = 1 per m2 * T 2 nya adalah 400 k ini m2 dan M1 nya kita ganti lama kita bersin M2 per 300 = 1 per 400 ini yang ini kita kalikan silang Nah maka kita dapat disini untuk M2 per M1 = 300 per 400 adalah di sini bisa kita coret maka kita dapat 2 per 1 = 3 per 4 maka disini kita dapat tuh M2 nya = 3 per 4 dikali dengan M1 di sini kan M2 adalah masa di dalam tabung saat suhu 127 derajat Celcius M 1 lah masa di dalam tabung saat suhu 27 derajat Celcius perbandingan antara massa gas yang keluar berarti kalau mau mencari massa gas yang keluar otomatis di sini kita cari perubahan massanya perubahan masa sebelum dan sesudah dipanaskan berarti di sini untuk Delta m. = massa gas sebelum latihan 1 dikurang massa gas itu dipanaskan itu M2M satunya di sini itu tetap 1 dikurang M2 nya adalah 3 per 4 dikali M 1, maka kita yang keluar di sini = seperempat X M1 selesai makan di sini Perbandingan massa gas yang keluar dan massa awalnya berarti sini perbandingan antara Delta m banding masalah adalah jam M 1 banding M1 adalah tetap M1 nah disini kita bagi kedua ruas dengan 1 berarti yang satunya bisa kita coret maka kita dapat perbandingan adalah 1 banding 4 karena 4 eh kita kalikan keras yang kanan berarti Perbandingan massa gas yang keluar dari tabung dan massa awal adalah 1 banding 4 sampai jumpa di pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Jakarta Kini semakin banyak masyarakat yang beralih menggunakan kompor gas. Sebab, kompor gas sangat mudah penggunaannya. Meski begitu, kemudahan penggunaan kompor gas ini masih kerap disepelekan. Hingga tabung gas yang bocor tidak diperhatikan dan menyebabkan ledakan. Tips agar tabung gas tidak meledak bisa membantu mengantisipasinya. Cara Mengatasi Tabung Gas Bocor, Kenali Langkah Memasang yang Aman Jangan Takut, Begini Cara Aman Mengatasi Tabung Gas Bocor Takut Ditembak Polisi, Pencuri Tabung Gas di Palembang Akhirnya Menyerahkan Diri Ledakan tabung gas ini perlu diantisipasi dengan saksama. Sebab, dampak ledakan yang selama ini terus disepelekan cukup besar. Bahkan, penggunaan regulator yang konon sudah terbilang aman masih saja muncul kebocoran. Di sini pentingnya tips agar tabung gas tidak meledak. Tips agar tabung gas tidak meledak akan membuat keamanan semakin kuat. Kebocoran tabung gas yang terjadi menjadi bisa diatasi lebih dini. Sehingga ledakan dalam skala besar lebih mudah dihindari. Berikut ulas tips agar tabung gas tidak meledak dari berbagai sumber, Jumat 5/6/2020.Alat sesuai Standar Nasional Indonesia SNIIlustrasi kompor gas dok. ElmiraMenggunakan alat standar SNI termasuk tips agar tabung gas tidak meledak. Seperti regulator atau selang tabung gas yang hendak digunakan. Sebab, banyak selang yang beredar di pasaran tetapi tidak aman. Menggunakan selang dan regulator ber-SNI akan memperkecil potensi tabung gas meledak. Gunakan juga kompor SNI untuk meminimalisir kecelakaan ini. Tidak hanya menggunakan yang sesuai SNI, tetapi perawatannya juga harus diperhatikan. Baik sebelum, saat, dan setelah menggunakannya. Jangan sampai teledor dan mengenai selang tabung gas. Jangan pula meninggalkan makanan dekat tabung gas, sebab akan membuat tikus berdatangan. Tikus-tikus ini berisiko merusak peralatan dapur dan menyebabkan kebocoran tabung Terpasang EratIlustrasi kompor gas dok. ElmiraSelain menggunakan alat SNI, perhatikan juga cara pemasangannya. Memasang alat dengan erat termasuk tips agar tabung gas tidak meledak. Sebab, tabung gas yang benar pemasangannya akan membuatnya tidak mudah bocor. Waspadai jika mendengar suara mendesis meski selang dan regulator sudah terpasang di tabung. Hal ini bisa menandakan peralatan tersebut masih belum cukup erat pemasangannya. Jika suara mendesis masih terus terdengar, sebaiknya segera ganti regulator karena karet penahan gas sudah mulai kendur. Perhatikan Alat yang Rusak Sebaiknya mulai periksa tabung gas dan peralatan pendukungnya secara berkala. Tips agar tabung gas tidak meledak ini untuk mengantisipasi ledakan yang tidak selalu disebabkan oleh tabung/karet tabung. Ledakan bisa terjadi karena alat-alat penunjangnya seperti regulator. Regulator bisa rusak, bocor, dan rapuh akibat masa pakai. Amati tanda-tanda kerusakannya agar ledakan bisa mudah DapurIlustrasi ruang makan dan dapur. dok. Dekoruma/Dinny MutiahMemiliki ventilasi udara dapur yang baik termasuk tips agar tabung gas tidak meledak. Berat jenis tabung gas lebih berat dari udara, sehingga gas akan turun ke bawah. Inilah alasan ventilasi bawah dapur harus benar-benar baik. Tujuannya agar gas bisa keluar dari dapur dan tidak bercampur udara dapur. Sebab, campuran gas yang sensitif akan panas dan mudah meledak. Bukalah pintu dan jendela dengan lebar, agar udara bersih masuk ke dalam dan gas menyebar ke luar. Jangan sampai terus membiarkan gas terus berada dalam ruang dapur dan menyebabkan ledakan. Bisa juga dengan memindahkan tabung gas ke luar dapur, agar tidak memicu ledakan. Lebih baik lagi buat ventilasi yang lebih besar sejak awal, agar penumpukan gas tidak memicu ledakan. Letakkan Tabung Gas Jauh dari Sumber PanasPekerja mengangkut tabung gas ke dalam kapal di Rawa Saban, Kabupaten Tangerang, Banten, Kamis 17/4. ANTARA FOTO/Rivan Awal LinggaLetakkan tabung gas jauh dari sumber panas. Jangan pula meletakkan tabung sejajar kompor atau di atas kompor. Taruh tabung di bawah kompor dengan jarak agak jauh sejak awal. Tips agar tabung gas tidak meledak tujuannya agar tabung tidak terpapar api yang bisa menstimulasi ledakan. Lebih baik lagi jika tabung diletakkan pada kabinet bawah kompor. Tidak hanya mengantisipasi untuk diri sendiri. Namun, tetap pastikan seluruh anggota keluarga mengetahui bahwa selang dan regulator tabung gas harus terpasang udara di dapur selalu lancar dan tabung diletakkan agak jauh dari Listrik dan ApiMenghindari dari kontak listrik dan api adalah tips agar tabung gas tidak meledak. Antisipasi ini dilakukan terutama ketika tabung sudah mendesis/bocor. Jika hal ini terjadi, jangan nyalakan api dan segera matikan kompor. Hindari juga untuk menyalakan lampu dan perangkat listrik. Sebab, kontak listrik bisa memicu timbulnya gas dalam ruangan. Gas ini akan mengakibatkan munculnya ledakan pada tabung Tabung dengan Kain BasahIlustrasi Tabung Gas / Sumber PixabayJika mendapati api kecil di sekitar tabung gas, tutuplah menggunakan kain basah. Jangan panik dan mulai ambil tindakan untuk mengatasinya dengan kain basah. Mulailah ambillah kain di sekitar dan basahi dengan air, lalu segera tutupkan pada api. Lakukan pada tabung gas, terutama pada bagian permukaannya. Kain basah akan segera memadamkan api dan menghindari ledakan. * Fakta atau Hoaks? Untuk mengetahui kebenaran informasi yang beredar, silakan WhatsApp ke nomor Cek Fakta 0811 9787 670 hanya dengan ketik kata kunci yang diinginkan.
Post Views 1,640 Pada kali ini menyajikan soal dan pembahasan tentang teori kinetik gas materi fisika SMA. Dapatkan akses ke soal dan pembahasan tentang teori kinetik gas yang dikemas dengan jelas dan mudah dipahami. Pelajari tentang konsep-konsep penting seperti distribusi kecepatan molekul, tekanan gas, dan energi kinetik. Perbanyak latihan soal untuk menguji pemahaman Anda dan persiapkan diri untuk ujian atau kompetisi ilmiah dengan baik. Berikut ini adalah beberapa soal dan pembahasan tentang teori kinetik gas Apa yang dimaksud dengan teori kinetika gas? Teori kinetika gas adalah teori yang menjelaskan perilaku gas dari segi kinetika, yaitu perilaku partikel-partikel yang membentuk gas. Teori ini dikembangkan oleh Maxwell dan Boltzmann pada abad ke-19 dan menjelaskan fenomena seperti tekanan, suhu, dan volume gas dari perspektif kinetik partikel. Teori ini juga menjelaskan konsep seperti distribusi kecepatan partikel gas dan jumlah molekul dalam suatu volume. Bagaimana teori kinetik gas menjelaskan tekanan gas? Teori kinetik gas menyatakan bahwa tekanan gas merupakan hasil dari molekul-molekul gas yang terus-menerus menghantam dinding wadah yang menampung gas tersebut. Jika molekul-molekul gas bergerak dengan kecepatan yang lebih tinggi, maka tekanan yang terjadi juga akan lebih tinggi. Jelaskan asumsi apa saja yang digunakan pada teori kinetik gas? Beberapa asumsi yang digunakan pada teori kinetika gas adalah Partikel gas adalah partikel yang tidak saling berinteraksi secara langsung. Partikel gas adalah partikel yang bergerak secara acak dan memiliki distribusi kecepatan yang berbeda. Partikel gas memiliki energi kinetik yang sama dalam suatu sistem yang sama. Partikel gas tidak memiliki ukuran atau bentuk yang spesifik. Partikel gas tidak memiliki gaya tarik atau tolak antara satu sama lain. Volume yang ditempati oleh partikel gas sangat kecil dibandingkan dengan volume sistem secara keseluruhan. Teori kinetika gas tidak memperhitungkan efek kuantum. Teori ini hanya berlaku untuk gas ideal, yang tidak mengalami efek intermolekuler atau interaksi partikel. Bagaimana teori kinetik gas menjelaskan hukum ideal gas? Teori kinetik gas menjelaskan hukum ideal gas dengan mengasumsikan bahwa molekul-molekul gas tidak memiliki interaksi satu sama lain, sehingga tidak ada gaya tarik-menarik atau tolak-menolak antar molekul. Hukum ideal gas dapat dinyatakan dalam persamaan PV = nRT, di mana P adalah tekanan, V adalah volume, n adalah jumlah mol gas, R adalah konstanta gas, dan T adalah temperatur dalam kelvin. Apa saja penerapan teori kinetik gas dalam kehidupan sehari hari? Beberapa penerapan teori kinetik gas dalam kehidupan sehari-hari adalah Pembuatan kompor gas teori kinetik gas digunakan untuk memahami bagaimana gas digunakan sebagai sumber energi untuk memasak, dan bagaimana aliran gas dikontrol untuk mencapai tingkat yang diinginkan dari panas yang dihasilkan. Sistem pendingin udara teori kinetik gas digunakan untuk memahami bagaimana gas digunakan sebagai refrigeran dalam sistem pendingin udara, dan bagaimana perubahan tekanan dan suhu digunakan untuk mengubah gas menjadi cairan dan kembali menjadi gas. Pembuatan roket teori kinetik gas digunakan dalam desain roket untuk memahami bagaimana gas dibakar dan diekspansi dari tanpa keluar melalui nozzle untuk menghasilkan dorongan. Pembuatan bahan kimia Teori kinetik gas digunakan dalam proses pembuatan bahan kimia untuk menentukan tingkat reaksi, kondisi operasi yang optimal dan produk yang dihasilkan. Pembuatan lampu Teori kinetik gas digunakan dalam pembuatan lampu untuk memahami bagaimana gas digunakan sebagai bahan bakar dan bagaimana perubahan tekanan dan suhu digunakan untuk menghasilkan cahaya. Soal Teori Kinetik Gas Nomor 1Sejumlah gas ideal dipanaskan dalam sebuah silinder berpenghisap pada tekanan tetap, maka1 volume gas bertambah2 tekanan gas konstan3 volume dan temperatur berbanding lurus4 massa gas konstanPernyataan yang benar adalah nomor ….A. 1, 2, dan 3B. 1 dan 3C. 2 dan 4D. 4 sajaE. semua benar Jawaban E Soal Nomor 2Dua mol gas N2 pada suhu 27 oC memiliki tekanan 1 atm. Volume gas tersebut adalah ….A. 50 dm3B. 40 dm3C. 30 dm3D. 20 dm3E. 10 dm3 Pembahasan Diketahui P = 1 atm = 1 x 105 N/mn = 2 molR = 8,314 J/mol KT=27 oC+273=300 K Ditanyakan V = ? \begin{align*} PV &= nRT \\ 1\cdot 10^5 \cdot V &= 2\cdot 8,314 \cdot 300 \\ 1\cdot 10^5 \cdot V &= 2\cdot 8,314 \cdot 300 \\ 1\cdot 10^5 \cdot V &= \\ V &= 4,988\cdot 10^{-2} \quad \textrm{m}^3 \\ &= 49,88 \quad \textrm{dm}^3 \\ &\approx 50 \quad \textrm{dm}^3 \end{align*} Jawaban A Soal dan pembahasan teori kinetik gas kelas 11 Soal Nomor 3Kelajuan suatu partikel gas ideal pada suhu T Kelvin adalah v. Jika suhu diturunkan hingga menjadi $\frac{1}{4}$T, kejauannya akan menjadi ….A. $\frac{1}{4}$vB. $\frac{1}{2}$vC. vD. 2vE. 4v Pembahasan \begin{align*} \frac{v}{v’}&= \sqrt{\frac{T}{T’}} \\ \frac{v}{v’}&= \sqrt{\frac{T}{\frac{1}{4}T}} \\ \frac{v}{v’}&= \sqrt{4} \\ \frac{v}{v’}&= 2 \\ v’ &= \frac{1}{2}v \end{align*} Jawaban B Soal Nomor 4Gas ideal menempati sebuah tabung gas yang bocor dengan volume 0,6 m3. Gas tersebut tidak keluar dari tabung karena suhu dan tekanannya sama dengan suhu dan tekanan lingkungan. Jika gas dalam tabung dipanaskan dari suhu 27 oC hingga 77 oC, berapakah volume gas yang keluar dari dalam tabung?A. 0,5 m3B. 0,4 m3C. 0,3 m3D. 0,2 m3E. 0,1 m3 Pembahasan Diketahui V = 0,6 m3T = 27 oC + 273 = 300 KT’ = 77 oC + 273 = 350 KP = P’ Ditanya Vyang keluar = V’ – V \begin{align*} \frac{PV}{T}&= \frac{P’V’}{T’} \\ \frac{V}{T}&= \frac{V’}{T’} \\ \frac{0,6}{300}&= \frac{V’}{350} \\ V’&= 0,7 \quad \textrm{m}^3 \end{align*} Volume gas yang keluar Vyang keluar = V’ – V = 0,7 – 0,6 = 0,1 m3 Jawaban E Soal pembahasan teori kinetik gas Soal Nomor 5Sepuluh liter gas ideal bersuhu 127 oC mempunyai tekanan 110,4 Pa. Bila k = 1,38 x 10-23 J/K, maka banyaknya partikel gas adalah ….A. 2,0 x 1020B. 2,0 x 1019C. 2,0 x 1018D. 1,8 x 1020E. 1,8 x 1018 Pembahasan Diketahui V = 10 liter = 10 x 10-3 m3T = 127 oC + 273 = 400 KP = 110,4 Pa = 110,4 N/m2 Ditanya N? \begin{align*} PV&= NkT \\ 110,4\cdot 10\cdot 10^{-3}&= N\cdot 1,38^{-23} \cdot 400 \\ 1,104 &= 552 \cdot 10^{-23} N \\ N &= 0,002 \cdot 10^{23} \\ &= 2,0 \times 10^{20} \end{align*} Soal Nomor 6Jika konstanta Boltzmann = 1,38 x 10-23 J/K, maka energi kinetik sebuah atom gas helium pada suhu 27 oC adalah ….A. 2,07 x 10-21 JB. 4,14 x 10-21 JC. 5,59 x 10-21 JD. 6,21 x 10-21 JE. 12,42 x 10-21 J Pembahasan Diketahui T = 27 oC + 273 = 300 Kk = 1,38 x 10-23 J/K Ditanyakan Ek = ? \begin{align*} Ek &= \frac{3}{2}kT \\ &= \frac{3}{2}\cdot 1,38\cdot 10^{-23}\cdot 300 \\ &=621\cdot 10^{-23} \quad \textrm{J} \\ &=6,21\cdot 10^{-21} \quad \textrm{J} \end{align*} Jawaban D Soal dan pembahasan teori kinetik gas ideal Soal Nomor 8Suatu gas ideal menempati volume 100 cm3 pada suhu 0 oC dan tekanan 1 atm. Bila suhunya menjadi 50 oC sedangkan tekanan menjadi 2 atm, volume gas menjadi ….A. 118,3 cm3B. 84,5 cm3C. 59,2 cm3D. 45,5 cm3E. 38,4 cm3 Pembahasan Diketahui T1 = 0 oC + 273 = 273 KT2 = 50 oC + 273 = 323 KP1 = 1 atmP2 = 2 atmV1 = 100 cm3 Ditanyakan V2 = ? \begin{align*} \frac{P_1V_1}{T_1}&= \frac{P_2V_2}{T_2} \\ \frac{1 \cdot 100}{273}&= \frac{2\cdot V_2}{323} \\ V_2&= \frac{323\cdot 100}{2\cdot 273} \\ V_2&= 59,2 \quad \textrm{cm}^3 \end{align*} Jawaban C Contoh soal dan pembahasan tentang teori kinetik gas Soal Nomor 9Massa sebuah molekul nitrogen adalah empat belas kali massa sebuah molekul hidrogen. Molekul nitrogen pada suhu 294 K mempunyai kecepatan rata-rata yang sama dengan molekul hidrogen pada suhu ….A. 10,5 KB. 21 KC. 41,16 KD. 42 KE. 205,8 K Pembahasan \begin{align*} v_{N_2}&= v_{H_2} \\ \sqrt{\frac{3RT_{N_2}}{Mr_{N_2}}}&= \sqrt{\frac{3RT_{H_2}}{Mr_{H_2}}} \\ \sqrt{\frac{T_{N_2}}{14Mr_{H_2}}}&= \sqrt{\frac{T_{H_2}}{Mr_{H_2}}} \\ \frac{294}{14}&=\frac{T_{H_2}}{1} \\ T_{H_2}&= 21 \quad \textrm{K} \end{align*} Jawaban B Soal Nomor 10Energi kinetik gas ideal merupakan fungsi dari ….A. suhuB. volumeC. tekanan dan suhuD. volume dan suhuE. volume dan tekanan Pembahasan $Ek = \frac{3}{2}kT$ Ek = energi kinetik Jk = tetapan Boltzmann = 1,38 x 10-23 J/KT = suhu K Jadi energi kinetik tergantung pada suhu. Jawaban A Soal dan pembahasan teori kinetik gas Soal Nomor 11Gas dalam ruang tertutup dengan suhu 42 oC dan tekanan 7 atm memiliki volume 8 liter. Setelah gas dipanaskan sampai 87 oC, ternyata tekanan gas naik sebesar 1 atm. Volume gas sekarang ….A. berkurang 20%B. berkurangC. tetapD. bertambah 12%E. bertambah 20% Pembahasan Diketahui T = 42 oC + 273 = 315 KT’ = 87 oC + 273 = 360 KP = 7 atmP’ = 8 atmV = 8 liter Ditanyakan V’ = ? \begin{align*} \frac{PV}{T}&= \frac{P’V’}{T’} \\ \frac{7 \cdot 8}{315}&= \frac{8\cdot V’}{360} \\ \frac{7 }{21}&= \frac{V’}{24} \\ V’&= 8 \quad \textrm{liter} \end{align*} Karena V = V’ = 8 liter, maka volume gas sekarang tetap. Jawaban C Soal Nomor 12Sebanyak 3 mol gas ideal menempati ruang tertutup yang volumenya 1 liter dan bersuhu 27 oC. Jika tetapan gas umum 8,3 J/mol K, besar tekanan gas tersebut adalah ….A. 7,47 x 106 PaB. 7,47 x 109 PaC. 7,47 x 1011 PaD. 7,47 x 1012 PaE. 7,47 x 1013 Pa Pembahasan Diketahui n = 3 molV = 1 liter = 1 dm3 = 1 x 10-3 m3T = 27 oC + 273 = 300 KR = 8,3 J/mol K Ditanyakan P = ? \begin{align*} PV &= nRT \\ P \cdot 1\cdot 10^{-3} &= 3\cdot 8,3 \cdot 300 \\ P \cdot 1\cdot 10^{-3} &= 7470 \\ P &=7470 \cdot 10^3 \\ P&=7,47\cdot 10^6 \quad \textrm{Pa} \end{align*} Jawaban A
massa gas yang keluar dari tabung